Researchers identify potential alternative to CRISPR-Cas genome editing tools


An international team of CRISPR-Cas researchers has identified three new naturally-occurring systems that show potential for genome editing. The discovery and characterization of these systems is expected to further expand the genome editing toolbox, opening new avenues for biomedical research. The research, published October 22nd in the journal Molecular Cell, was supported in part by the National Institutes of Health.

“This work shows a path to discovery of novel CRISPR-Cas systems with diverse properties, which are demonstrated here in direct experiments,” said Eugene Koonin, Ph.D., senior investigator at the National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), part of the NIH. “The most remarkable aspect of the story is how evolution has achieved a broad repertoire of biological activities, a feat we can take advantage of for new genome manipulation tools.”

Continue reading

The NCBI Minute: quick introductions to NCBI resources


For over two years, NCBI has presented webinars on a wide range of topics to a growing audience. More recently, we began offering shorter webinars in a series called The NCBI Minute.

These presentations introduce a new NCBI tool or resource or provide quick tips for using a popular resource in 5-10 minutes.

screenshot of popular NCBI Minute presentations on YouTube

Figure 1. Examples of popular NCBI Minute presentations; SmartBLAST Introduction presented September 2 (YouTube), and Connecting with PubMed Commons presented May 2 (YouTube).

Each NCBI Minute is recorded and posted on our YouTube channel in the NCBI Minute playlist. Two of our most popular NCBI Minute presentations (Figure 1) are the introduction to the new SmartBLAST service, first described on NCBI Insights in July, and Connecting with PubMed Commons, our public commenting service for PubMed articles described in several NCBI Insights posts.

Missed a presentation? No problem!

If you missed any of The NCBI Minute, there are two ways you can catch up:

Continue reading

A Fourth Offering of A Librarian’s Guide to NCBI


This blog post is directed toward medical or science librarians in the United States who offer bioinformatics education and support services or are planning to offer such services in the future.

The NCBI, in partnership with the National Library of Medicine Training Center (NTC), will once again offer the Librarian’s Guide to NCBI course on the NIH campus, March 7-11, 2016 (Announcement). This will be the fourth presentation of the course, and there are now 69 graduates of the training program.

These graduates represent 61 libraries, hospitals and government agencies from 27 states and the District of Columbia. Librarian’s Guide graduates now form a core community of NCBI-trained bioinformatics support specialists who maintain collaboration and mutual support through an online forum and monthly NCBI “Office hours” videoconference discussion sessions with course faculty and students. Materials from the 2013, 2014 and 2015 courses are available now, as well as lecture videos for the expression module.

Librarian's Guide 2015 class photo

Figure 1. Participants in the March 2015 A Librarian’s Guide to NCBI course. This class included 29 biomedical and science librarians.

Continue reading

SciENcv Updated to Support New NIH Biosketch Format


This blog post is geared toward researchers.

In November, NIH announced a new format for biographical sketches (biosketches); the new format is required for grant applications submitted for due dates after May 24, 2015 (see NOT-OD-15-032). SciENcv, a tool available through My NCBI for creating biosketches, has been updated to reflect the format changes and to help users convert their existing NIH biosketches from the old format to the new.

What changed with the NIH Biosketch?

Differences between the old and new NIH Biosketch formats include:

  1. Maximum length increased from 4 to 5 pages
  2. Rearranged data in the table at the top of the Biosketch
  3. Section A, Personal Statement can now include up to 4 supporting citations
  4. Section C is now called “Contribution to Science” and should be comprised of up to 5 brief descriptions of your most significant contributions to science, each with up to 4 supporting citations. In addition,  you may also provide a URL to a full list of your published work as found in a publicly available digital database such as My Bibliography. This section is the most notable difference in the new format.

Continue reading

PubMed Also-Viewed: Quickly find related articles


You’ve seen it before on shopping web site: you load a page displaying an item you want and see a list of other items that people bought with the one you’re viewing.

PubMed is free, but finding the important articles on a topic can cost a lot of time. To help you keep on top of the literature – with a little help from your fellow PubMed users – we are introducing a new type of link called “Articles frequently viewed together”. For some PubMed abstracts, you may see this link in the “Related Information” section in the right column.

PubMed Also-Viewed feature

Figure 1. The PubMed Also-Viewed feature.

Continue reading

SmartBLAST: Faster BLASTp search results in a graphical view


BLAST (Basic Local Alignment Search Tool) is a popular tool for finding sequences in a given database that are similar to a query sequence. Traditionally, BLAST displays these results as a sorted list of matches between the query and each database sequence. While this display is useful for examining how each subject sequence matches the query, it treats all subject sequences the same, regardless of the quality of the sequence data or its annotation, and also does not allow easy comparisons between different subject sequences.

For example, the subject sequences may fall into multiple groups of similar sequences, or all of the subject sequences may be more similar to each other than to the query. A common way to obtain this information is to construct a multiple sequence alignment of the query and some or all of the subject sequences, but to this point, BLAST has not provided such alignments directly.

Enter SmartBLAST! SmartBLAST is a new and experimental NCBI tool that makes it easier to answer common sequence analysis tasks, such as finding a candidate protein name for a sequence, locating regions of high sequence conservation, or identifying regions covered by database sequences but missing from the query.

Continue reading

Introducing PubMed Labs


Welcome to PubMed Labs!

PubMed Labs is all about you. It’s a new NCBI initiative for creating innovative and relevant products by involving you, our user community, from the beginning.

PubMed Labs is about experimentation. It’s a place where you’ll find early versions of new tools, experimental content, and proposed features, as well as an opportunity to suggest ideas to us.

PubMed Labs is about learning. It’s a place where the focus is on figuring out what works, where failure is OK because it’s a learning experience, and where any idea is welcome that can improve our services for our users.

PubMed Labs is about conversation. It’s a place where we can share future plans with you, and you can tell us how we’re doing. It’s a place where we all can come together to create resources that will benefit the broader scientific community.

Join the conversation!

Continue reading

NCBI’s First Hackathon: Advanced Bioinformatic Analysis of Next-Gen Sequencing Data


This blog post is geared toward genomics professionals.

From January 5th-7th, 2015, NCBI, in conjunction with the NIH Office of Data Science, held a genomics hackathon, where genomics professionals gathered to write useful, efficient pipelines for people new to genomics.

After we announced the hackathon, over 130 qualified applicants expressed interest in attending. Four team leads chose 23 attendees from this pool, then assigned initial predefined roles and provided biological guidance for a product in one of four subject areas: DNA-Seq, RNA-Seq, Epigenomics and Metagenomics. Continue reading

NCBI RefSeq’s Antimicrobial Peptide Indexed Field: Facilitating Novel Antibiotic Discovery


This blog post is aimed toward biomedical researchers.

Antibiotic-resistant bacterial infections account for the deaths of tens of thousands of Americans every year. Over the past twenty years, these difficult to treat infections have become more common. Since traditional antibiotics are ineffective in these cases, biomedical researchers are looking for alternatives. NCBI’s RefSeq project has created a new indexed field, “Protein has antimicrobial activity [prop]“, to assist in this search by retrieving useful sequence annotation showing naturally occurring antimicrobial peptides, or AMPs.

Antimicrobial peptides are naturally occurring peptides from a diverse array of species that are a part of an organism’s innate immune system. The RefSeq team recently gathered a list of over 130 human genes encoding one or more experimentally proven AMPs. These peptides are typically less than 100 amino acids and can display bactericidal, antiviral, antifungal, and even antitumor activities, with a specific AMP usually having a subset of these activities. AMPs may be a suitable alternative to traditional antibiotics because they work quickly, efficiently, and tend to have broad spectrum activity. Moreover, since they are naturally-occurring, AMPs are less likely than other compounds to be toxic to host cells or to give rise to AMP-resistant bacterial strains. Continue reading

Accessing the Hidden Kingdom: Fungal ITS Reference Sequences


This post is geared toward fungi researchers as well as RefSeq and BLAST users.

Fungi have unique characteristics that can make it difficult to identify and classify species based on morphology. To address these issues, Conrad Schoch, NCBI’s fungi taxonomist, and Barbara Robbertse, NCBI’s fungi RefSeq curator, in collaboration with outside mycology experts, are curating a set of fungal sequences from internal transcribed spacer (ITS) regions of the nuclear ribosomal RNA genes. This set of standard DNA sequences for fungal taxa not only addresses these difficulties in identifying and classifying fungal species by morphology, but is also essential for analyzing environmental (metagenomics) sequencing studies. The curated ITS sequences, described in a recent article in Database (PMC Free Article), all have associated specimen data and, when possible, are taken from sequences from type materials, ensuring correct species identification and tracking of name changes. This article will show you how to access these ITS sequences and search them using the specialized Targeted Loci BLAST service.

The fungal ITS sequences are a RefSeq Targeted Loci BioProject (PRJNA177353). As you may know, a BioProject is a collection of biological data related to a single initiative; in this case, the goal is to collect and curate fungal sequences from targeted loci – specific molecular markers such as protein coding or ribosomal RNA genes used for phylogenetic analysis.

Continue reading