Improved search makes it easier to find antimicrobial resistance protein information

It’s now easier to find known antimicrobial resistance (AMR) protein information at NCBI. You can search by gene symbol, protein name, or accession across NCBI databases and retrieve the best representative DNA sequence that is a reference for antimicrobial resistance genes from the National Database of Antibiotic Resistant Organisms (NDARO).


Continue reading

Track pathogenic organisms promptly with the National Database of Antibiotic Resistant Organisms

In response to the rising threat of antimicrobial resistance (AMR), NCBI built the National Database of Antibiotic Resistant Organisms (NDARO). With NDARO, you can:


Figure 1. Filter your Isolates Browser results based on date, location, and for antibiotic resistance (whether the isolate has any AMR genes, or any Antimicrobial Susceptibility Testing (AST) phenotype submitted).

Continue reading

NCBI RefSeq’s Antimicrobial Peptide Indexed Field: Facilitating Novel Antibiotic Discovery

This blog post is aimed toward biomedical researchers.

Antibiotic-resistant bacterial infections account for the deaths of tens of thousands of Americans every year. Over the past twenty years, these difficult to treat infections have become more common. Since traditional antibiotics are ineffective in these cases, biomedical researchers are looking for alternatives. NCBI’s RefSeq project has created a new indexed field, “Protein has antimicrobial activity [prop]“, to assist in this search by retrieving useful sequence annotation showing naturally occurring antimicrobial peptides, or AMPs.

Antimicrobial peptides are naturally occurring peptides from a diverse array of species that are a part of an organism’s innate immune system. The RefSeq team recently gathered a list of over 130 human genes encoding one or more experimentally proven AMPs. These peptides are typically less than 100 amino acids and can display bactericidal, antiviral, antifungal, and even antitumor activities, with a specific AMP usually having a subset of these activities. AMPs may be a suitable alternative to traditional antibiotics because they work quickly, efficiently, and tend to have broad spectrum activity. Moreover, since they are naturally-occurring, AMPs are less likely than other compounds to be toxic to host cells or to give rise to AMP-resistant bacterial strains. Continue reading