Finding Chemical Probes and Modulators – The Hunt for New Chemical Reagents and Medicines


This blog post is a continuation of last week’s blog on finding biological assay data; it is intended for researchers who use PubChem.

Your research focuses on a protein (receptor or enzyme) for which you’d like to identify a chemical probe or modulator. The probe could help to identify the subcellular location of a protein. A modulator may help to determine the biological effects of a particular protein’s activity. Additionally, finding a novel chemical that binds to your protein might assist you in exploring the use of a new class of therapeutics in drug design.

At NCBI, the PubChem BioAssay database stores biological activity assay information, which makes it possible to find experimentally measured targets for millions of chemicals. This blog post shows a simple workflow to download a table (with raw and kinetic data) of chemicals that have been determined to bind to a particular gene/protein target.

Continue reading

Identifying Chemical Targets – Finding Potential Cross-Reactions and Predicting Side Effects


This blog post is directed toward researchers using PubChem.

You’ve identified a chemical that you’d like to use in your research as a chemical probe for a receptor or an enzyme inhibitor. However, chemicals are known to be able to bind to multiple protein targets, commonly known as “cross-reactivity”. In biological activity assays, this can cause problems with measuring the activity of a specific protein or pathway. If the chemical is employed as a medicant in living organisms, interactions with molecules other than the intended target can cause “side effects”.

At NCBI, the PubChem BioAssay database stores biological activity assay information that makes it possible to find experimentally measured targets for millions of chemicals. This blog post describes a workflow to download a table of gene/protein targets for a particular chemical.

Tamoxifen compound page.

Figure 1. Tamoxifen compound page.

Continue reading