Tag: Nucleotide BLAST (blastn)

BLAST+ 2.13.0 now available with SRA BLAST, ARM Linux executables, and database metadata

BLAST+ 2.13.0 now available with SRA BLAST, ARM Linux executables, and database metadata

BLAST+ 2.13.0  includes several important new features including SRA BLAST programs, ARM Linux executables, and the ability to produce database metadata as well as some important improvements, and a few bug fixes.  You can download the new BLAST release from the FTP site.

New features

SRA / WGS BLAST (blastn_vdb, tblastn_vdb)

Beginning with this release, the BLAST distribution now includes the SRA BLAST programs  blastn_vdb and tblastn_vdb that can directly search SRA and WGS projects without the need to build a BLAST database. See the BLAST documentation on how to use these programs with WGS projects.

ARM Linux executables

This release also includes executables compiled under ARM Linux for the first time. Please let us know if you find any issues with ARM Linux programs.

Database metadata in JSON format

Starting with BLAST+ 2.13.0, the makeblastdb program generates an additional file with the file extension .njs for nucleotide databases or .pjs  for protein databases. These files contain BLAST database metadata in JSON format. See the BLAST database metadata section in the BLAST User Manual for an example. This file can be easily read by many tools and makes the BLAST database more compliant with FAIR principles.

See the release notes for more details on improvements and bug fixes for the release.

Important reminder about usage reporting

As we announced previously, BLAST can report limited usage information back to NCBI. This information shows us whether BLAST+ is being used by the community, and therefore is worth being maintained and developed.  It also allows us to focus our development efforts on the most used aspects of BLAST+.  Please help us improve BLAST by allowing BLAST to share information about your search. The BLAST privacy statement  provides details on the information collected, how it is used, and how to opt-out of reporting if you don’t want to participate.

Updated prokaryotic representative genomes collection includes 685 new species!

We are happy to announce an updated bacterial and archaeal representative genomes collection. The current collection contains a total of 15,507 assemblies selected from 236,000 prokaryotic RefSeq assemblies to represent their respective species. The collection has grown by five percent since August 2021. A total of 685 species are represented for the first time. In addition, 370 species are represented by a better assembly, and 84 species were removed because of changes in NCBI Taxonomy or uncertainty in their species assignment.

We updated the database on the Microbial Nucleotide BLAST page as well as the basic nucleotide BLAST RefSeq Representative genomes database (fourth in the menu) to reflect these changes. Finally, remember that you can now run BLAST searches against the proteins annotated on representative genomes (second in the menu). Find more information here.

Updated prokaryotic representative genome collection

The bacterial and archaeal representative genome collection has been updated!  We selected a total of 14,912 of the 224,000 prokaryotic RefSeq assemblies to represent their respective species. The collection has grown by 8% since April 2021 and now includes Candidatus and endosymbiont species (Figure 1), which constitute 303 and 140 respectively of the 1,077 newly added species. In addition, 719 species are represented by a better assembly, and 70 species were removed because of changes in NCBI Taxonomy or uncertainty in their species assignment.

Figure 1. Graphical view of a portion of the RefSeq Representative assembly for the bedbug endosymbiont Candidatus Wolbachia massiliensis isolate PL13.

Continue reading “Updated prokaryotic representative genome collection”

BLAST+ 2.12.0 now available with more efficient multithreaded searches

BLAST+ 2.12.0  programs feature better multithreaded searches and support a different threading model, threading by query, that can be more efficient in some situations.  The new release is also fully compatible the increase in the numeric range for the GI identifier, which will take effect in the nucleotide database later this year.  The list below shows details of the new features and bug fixes.  You can download the new BLAST release from the FTP site.

Continue reading “BLAST+ 2.12.0 now available with more efficient multithreaded searches”

Prokaryotic representative genomes update–over 900 new species!

We are happy to announce an updated bacterial and archaeal representative genome collection! We have selected 13,835 among 214,000 prokaryotic RefSeq assemblies to represent their respective species. The collection has increased by 6% since December 2020. About 950 species are represented for the first time, 476 species are represented by a better assembly, and 170 species were removed because of changes in NCBI Taxonomy or uncertainty in their species assignment.

Continue reading “Prokaryotic representative genomes update–over 900 new species!”

April 7 Webinar: Recent and upcoming enhancements to NCBI BLAST and Primer-BLAST services!

April 7 Webinar: Recent and upcoming enhancements to NCBI BLAST and Primer-BLAST services!

Join us on April 7, 2021 at 12PM eastern time to learn about new web BLAST and Primer-BLAST enhancements that improve your BLAST experience. You’ll also see a preview of some planned improvements to the databases that make it easier to find relevant matches.

Recent changes to web BLAST include added data columns on the descriptions table, so you can quickly find and sort your matches. Primer-BLAST now offers direct links from genome assembly pages, so you can easily select the specificity database. Primer-BLAST also now accepts multiple target templates making it easy to design primers that can amplify several similar sequences such as all splice variants of gene or the same target (16S, COI) from different strains or species.

  • Date and time: Wed, April 7, 2021 12:00 PM – 12:45 PM EDT
  • Register

After registering, you will receive a confirmation email with information about attending the webinar. A few days after the live presentation, you can view the recording on the NCBI webinars playlist on the NLM YouTube channel. You can learn about future webinars on the Webinars and Courses page.

Updated and improved collection of RefSeq representative genome assemblies now available

We have updated the collection of representative genome assemblies for Bacteria and Archaea. As announced in April, this set is now recalculated three times a year. We selected a total of 11,727 prokaryotic assemblies to represent their respective species among the 192,000 assemblies in RefSeq. Six hundred and thirty-five species were included in the collection for the first time, while 395 organisms from undefined species (such as Bacillus bacterium) were removed. We were able to choose a higher-quality representative than in the previous set for 18% of Bacterial and Archaeal species due to improvements in the logic of the selection that is now based on the assembly length, number of pseudo CDSs called in the PGAP annotation, number of scaffolds, whether Gene IDs are available in the Gene database for the assembly that is currently representative, and type strain status. You can see the exact criteria in order of importance on the Prokaryotic RefSeq Genomes page. Now that the new selection process is in place, we expect future updates to have fewer changes. We will replace a representative only if the assembly has changed RefSeq status or if a substantially better assembly becomes available.

We have updated the database on the Microbial Nucleotide BLAST page as well as the basic nucleotide BLAST RefSeq Representative Genome Database, to reflect these changes.

You can download the reference and representative set from the Assembly resource. If you are interested in the annotation on these genomes, you can limit searches to proteins annotated on representative genomes by adding “refseq_select[filter]” to any query in the Protein database. For example, you can find all proteins annotated on representative genomes in the genus Klebsiella by using the query: “Klebsiella[organism] AND refseq_select[filter]“.  A BLAST database of proteins annotated on representative genomes will be coming soon. Stay tuned!

New ribosomal RNA BLAST databases available on the web BLAST service and for download

We have a curated set of ribosomal RNA (rRNA)  reference sequences (Targeted Loci) with verifiable organism sources and current names. This set is critical for correctly identifying and classifying prokaryotic (bacteria and archaea) and fungal samples (Table 1). To provide easy access to these sequences, we recently added a separate rRNA/ITS databases section on the nucleotide BLAST page for these targeted sequences that makes it convenient to quickly identify source organisms (Figure 1)

Database BioProjects Sequences
16S ribosomal RNA (Bacteria and Archaea) PRJNA33317 , PRJNA33175

 

20,845
18S ribosomal RNA sequences (SSU) from Fungi type and reference material PRJNA39195 2,337
28S ribosomal RNA sequences (LSU) from Fungi type and reference material PRJNA51803 5,185
Internal transcribed spacer region (ITS) from Fungi and Oomycete type and reference material PRJNA177353, PRJNA362621

 

10,874

Table 1.  NCBI curated targeted rRNA sequences now available as BLAST databases. Continue reading “New ribosomal RNA BLAST databases available on the web BLAST service and for download”

The new BLAST results are now the default view

As you may know,  we have been offering a new BLAST results (Figure 1) as a test page since April.  In response to your positive reception and after incorporating many improvements that you suggested, we made the new results the default today,  August 1, 2019.

You will still be able to access to the traditional results for a several months. This will provide you additional time if you need it to adjust your workflows or teaching materials to the new display.

Continue reading “The new BLAST results are now the default view”