Tag: PGAP

RefSeq Release 202 is public

RefSeq release 202 is accessible online, via FTP and through NCBI’s Entrez programming utilities, E-utilities.

This full release incorporates genomic, transcript, and protein data available as of September 8, 2020, and contains 255,571,455 records, including 186,755,483 proteins, 33,077,068 RNAs, and sequences from 104,969  organisms. The release is provided in several directories as a complete dataset and also as divided by logical groupings.

Updated human genome Annotation Release 109.20200815
Updated Annotation Release 109.2020815 is an update of NCBI Homo sapiens Annotation Release 109. The annotation report is available here.

The annotation products are available in the sequence databases and on the FTP site.

This update includes around 15,000 updated RefSeq transcripts revised to use CAGE and polyA data to define 5′ and 3′ ends, and match the reference GRCh38 sequence.

Coronavirus host gene regulatory elements now annotated by RefSeq Functional Elements
The RefSeq Functional Elements project at NCBI has prioritized curation of experimentally validated regulatory elements for human host genes associated with SARS-CoV-2 entry into cells. The annotations include several enhancers, promoters, cis-regulatory elements and protein binding sites, among other feature types. We annotated 236 regulatory features for 27 distinct biological regions, including regulatory elements for the ABO, ACE2, ANPEP, CD209, CLEC4G, CLEC4M, CTSL, DPP4, and TMPRSS2 genes. More information can be found here.

New eukaryotic genome annotations
This release includes new annotations generated by NCBI’s eukaryotic genome annotation pipeline for 27 species, including:

  • maize annotation release 103, based on the new assembly Zm-B73-REFERENCE-NAM-5.0 (GCF_902167145.1)
  • marmoset annotation release 105, based on the new assembly Callithrix_jacchus_cj1700_1.1 (GCF_009663435.1)
  • Chinese hamster annotation release 104, based on the assembly CriGri_1.0 (GCF_000223135.1) and the new assembly CriGri-PICRH-1.0 (GCF_003668045.3)
  • Asian giant hornet annotation release 100, based on the new assembly V.mandarinia_Nanaimo_p1.0 (GCF_014083535.2)
  • Florida lancelet annotation release 100, based on the new assembly Bfl_VNyyK (GCF_000003815.2)
  • Anopheles stephensi annotation release 100, based on the new assembly UCI_ANSTEP_V1.0 (GCF_013141755.1)

Updated and improved collection of RefSeq representative genome assemblies now available
The collection of representative genome assemblies for Bacteria and Archaea contains 11,727 prokaryotic assemblies to represent their respective species. More information can be found here.

Updated protein family models used by PGAP available for download
Release 3.0 of the NCBI protein family models used by the Prokaryotic Genome Annotation Pipeline (PGAP) is now available.

This release contains 17,350 models: 12,864 HMMs built at NCBI (111 more than in release 2.0) and 4,486 TIGRFAM HMMs. In addition, since release 2.0, we have assigned product names to over 2,000 Pfam HMMs, bringing the total to 6,698 Pfam HMMs with names that can be transferred by PGAP to the annotated proteins they hit. More information can be found here.

Future change: Mouse Reference Assembly Update
RefSeq annotation of the new mouse GRCm39 assembly is in progress, and is expected to be included in the next release.

Updated and improved collection of RefSeq representative genome assemblies now available

We have updated the collection of representative genome assemblies for Bacteria and Archaea. As announced in April, this set is now recalculated three times a year. We selected a total of 11,727 prokaryotic assemblies to represent their respective species among the 192,000 assemblies in RefSeq. Six hundred and thirty-five species were included in the collection for the first time, while 395 organisms from undefined species (such as Bacillus bacterium) were removed. We were able to choose a higher-quality representative than in the previous set for 18% of Bacterial and Archaeal species due to improvements in the logic of the selection that is now based on the assembly length, number of pseudo CDSs called in the PGAP annotation, number of scaffolds, whether Gene IDs are available in the Gene database for the assembly that is currently representative, and type strain status. You can see the exact criteria in order of importance on the Prokaryotic RefSeq Genomes page. Now that the new selection process is in place, we expect future updates to have fewer changes. We will replace a representative only if the assembly has changed RefSeq status or if a substantially better assembly becomes available.

We have updated the database on the Microbial Nucleotide BLAST page as well as the basic nucleotide BLAST RefSeq Representative Genome Database, to reflect these changes.

You can download the reference and representative set from the Assembly resource. If you are interested in the annotation on these genomes, you can limit searches to proteins annotated on representative genomes by adding “refseq_select[filter]” to any query in the Protein database. For example, you can find all proteins annotated on representative genomes in the genus Klebsiella by using the query: “Klebsiella[organism] AND refseq_select[filter]“.  A BLAST database of proteins annotated on representative genomes will be coming soon. Stay tuned!

Updated protein family models used by PGAP available for download

Release 3.0 of the NCBI protein family models used by the Prokaryotic Genome Annotation Pipeline (PGAP) is now available from our FTP site. You can search this collection of hidden Markov models (HMMs) against your favorite prokaryotic proteins to identify their function using the HMMER sequence analysis package.

The 3.0 release contains 17,350 models: 12,864 HMMs built at NCBI (111 more than in release 2.0) and 4,486 TIGRFAM HMMs. In addition, since release 2.0,  we have assigned product names to over 2,000 Pfam HMMs, bringing the total to 6,698 Pfam HMMs with names that can be transferred by PGAP to the annotated proteins they hit. You can access a table of these product names from the release directory.Prot_evidenceFigure 1. The evidence for name assignment for type III secretion system (T3SS) translocon subunit SctB (NF038055) showing the protein matches. Species-specific names for this highly variable component of T3SS include YopD, EspB, IpaC, SipC, etc. Instead, we used the standard moniker for core genes of T3SS, Sct, Secretion and cellular translocation (PMID 26520801,  PMID 9618447) providing a unified nomenclature for this secretion system.  Continue reading “Updated protein family models used by PGAP available for download”

Recalculation of prokaryotic reference and representative genome assemblies

We have updated the collection of representative and reference assemblies for Bacteria and Archaea to better reflect the taxonomic breadth of the prokaryotes in RefSeq.  We chose the 11,478 representative assemblies in the new collection from the 180,000+ prokaryotic assemblies in RefSeq today.  We have selected one representative or reference assembly for every species based on several criteria including contiguity, completeness and whether the assembly is from type material.  We have also updated the reference and representative microbial Blast database to reflect these changes. This reference and representative set will be updated three times a year to reflect changes in RefSeq.  In addition, as we announced on Feb 14, we have reduced the number of reference genome assemblies — the subset of representative assemblies with annotation provided by outside experts —  to 15. See the list in our previous post .  We have re-annotated the 104 assemblies that are no longer reference with or Prokaryotic Genome Annotations Pipel (PGAP).

Protein family models used by PGAP are now available for download

A new release of the NCBI protein families profiles used by PGAP (the Prokaryotic Genome Annotation Pipeline) is now available. You can search this collection of Hidden Markov models (HMM) against your favorite prokaryotic proteins to identify their function using hmmer.

The HMMs are used as hints for the structural annotation of protein-coding genes in bacterial genomes and are also one of the sources for the names assigned to PGAP-annotated proteins presented in the Evidence-For-Name-Assignment comment block of RefSeq protein records (See for example, WP_004152100.1).

The collection comprises 12,753 HMMs that were built at NCBI, and 4,486 TIGRFAM HMMs whose ownership was transferred to NCBI in April 2018. In addition to the HMM profiles and seed alignments, a tab-delimited file containing the product names and other attributes added to the HMMs by curators is available.

  • 85% of models were assigned a product name that can be transferred to proteins hit by the model.
  • 7702 models have gene symbols.
  • 14508 are supported by a least one publication.
  • 6266 are assigned an Enzyme Commission number.
  • 617 represent anti-microbial resistance proteins.
  • Product names added to 4,686 PFAM HMMs owned by EBI-EMBL and used for functional annotation by PGAP are also included.

A total of 57 million RefSeq prokaryotic proteins have been named based on these curated HMMs, and can be identified with the Entrez query “meta Evidence-For-Name-Assignment”[Properties] AND “Evidence Category=HMM”[Text Word]. See an example and more information on web displays of HMMs in a previous post.

NCBI staff to present 3 posters at Advances in Genome Biology and Technology (AGBT), February 2020

Next week, NCBI staff will attend AGBT in Marco Island, Florida. On Tuesday, February 25, 2020, three posters from NCBI staff will be on display from 4:40 p.m. – 6:10 p.m. during the Poster Session and Wine Reception in the Banyan and Calusa Ballroom Foyers, Levels 1 and 3. Read on to learn a little bit about what we’ll be presenting.

Continue reading “NCBI staff to present 3 posters at Advances in Genome Biology and Technology (AGBT), February 2020”

New PGAP release with Singularity, no-internet option, and Taxonomy Check

A new version of the Prokaryotic Genome Annotation Pipeline (PGAP) with several important features is now available on Github.

  • In response to several requests we have added the option of running PGAP with Singularity, Podman or any other Docker-compatible executable you wish to use.
  • We have also lifted the requirement for internet access in case you have privacy concerns. To run the pipeline without internet access, set the flag
    --no-internet.
  • Are you unsure about the identity of organism you sequenced? We’ve added the Taxonomy-Check module to help you. This module will confirm the organism name or suggest a new taxonomic assignment through average nucleotide identity comparison with type material assemblies from GenBank. The check is currently an optional validation step prior to PGAP.

Try these new features and let us know what you think! Or submit your PGAP-annotated assembly to GenBank. And remember that if you are still improving the assembly and your genome doesn’t pass the pre-annotation validation, you can use the --ignore-all-errors flag to get a preliminary annotation.

Important changes coming to prokaryotic Reference and Representative genome assemblies

We are making changes to the set of bacterial and archaeal RefSeq Reference and Representative assemblies in February 2020.

  • We will reduce the number of Reference assemblies to 15 that have annotation provided by outside experts (Table 1) and re-annotate the 105 other current Reference assemblies using the latest Prokaryotic Genome Annotation Pipeline (PGAP) software. The re-annotated assemblies will lose reference status.
  • We will reassess and revise the set of Representative assemblies so that there is one assembly per species to better reflect the taxonomic diversity of the RefSeq bacterial and archaeal assemblies.

Continue reading “Important changes coming to prokaryotic Reference and Representative genome assemblies”

NCBI on YouTube: Get the most out of NCBI resources with these videos

Check out the latest videos on YouTube to learn how to best use NCBI graphical viewers, SRA, PGAP, and other resources.

Genome Data Viewer: Analyzing Remote BAM Alignment Files and Other Tips

This video shows you how to upload remote BAM files, and succinctly demonstrates handy viewer settings, such as Pileup display options, and highlights the very helpful tooltips in the Genome Data Viewer (GDV). There’s also a brief blog post on the same topic.

Continue reading “NCBI on YouTube: Get the most out of NCBI resources with these videos”

December 11 Webinar: Running the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) on your own data

December 11 Webinar: Running the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) on your own data

On Wednesday, December 11, 2019 at 12 PM, NCBI staff will present a webinar that will show you how to use NCBI’s PGAP (https://github.com/ncbi/pgap) on your own data to predict genes on bacterial and archaeal genomes using the same inputs and applications used inside NCBI. You can run PGAP your own machine, a compute farm, or in the Cloud. Plus, you can now submit genome sequences annotated by your copy of PGAP to GenBank.  Attend the webinar to learn more!

  • Date and time: Wed, Dec 11, 2019 12:00 PM – 12:45 PM EDT
  • Register

After registering, you will receive a confirmation email with information about attending the webinar. A few days after the live presentation, you can view the recording on the NCBI YouTube channel. You can learn about future webinars on the Webinars and Courses page.