Tag: RefSeq

RefSeq Release 215

RefSeq Release 215

RefSeq release 215 is now available online, from the FTP site and through NCBI’s Entrez programming utilities, E-utilities.

This full release incorporates genomic, transcript, and protein data available as of November 7, 2022, and contains 335,372,031 records, including 244,583,657 proteins and sequences from 125,116 organisms. The release is provided in several directories as a complete dataset and also as divided by logical groupings. Continue reading “RefSeq Release 215”

CCDS Release 24

CCDS Release 24

An updated dataset of human protein-coding regions from the Consensus Coding Sequence (CCDS) collaboration

Are you interested in a set of high-quality human coding regions (CDS) with equivalent annotation in NCBI’s RefSeq and EMBL-EBI’s (European Molecular Biology Laboratories-European Bioinformatics Institute) Ensembl annotations? Check out the new CCDS Release 24! This CCDS set was generated by comparing RefSeq Annotation Release 110 and Ensembl Release 108.

This update adds 2,746 new CCDS IDs and 237 new genes compared to the last human CCDS build (Release 22, 2018). CCDS Release 24 includes a total of 35,608 CCDS IDs that correspond to 19,107 genes, with 48,062 protein sequences from RefSeq and 47,762 from Ensembl.

The new CCDS release is available on FTP for bulk download and on the CCDS webpage in case you are looking for data on individual genes. Continue reading “CCDS Release 24”

New annotations in RefSeq!

New annotations in RefSeq!

In August and September, the NCBI Eukaryotic Genome Annotation Pipeline released thirty-eight new annotations in RefSeq for the following organisms:

  • Adelges cooleyi (spruce gall adelgid)
  • Aethina tumida (small hive beetle)
  • Anopheles aquasalis (mosquito)
  • Anopheles maculipalpis (mosquito)
  • Anthonomus grandis grandis (boll weevil)
  • Aphis gossypii (cotton aphid)
  • Bactrocera neohumeralis (fly)
  • Bombus affinis (bee)
  • Bombus huntii (bee)
  • Cataglyphis hispanica (ant)
  • Cygnus atratus (black swan) (pictured) Continue reading “New annotations in RefSeq!”
Now available: Updated prokaryote representative genomes collection

Now available: Updated prokaryote representative genomes collection

An updated bacterial and archaeal representative genomes collection is available! We selected a total of 16,665 of the 262,000 prokaryotic assemblies in RefSeq to represent their respective species. For the first time, more complete assemblies (as calculated by CheckM) were ranked higher than less complete assemblies. See the ranked list of criteria for selecting representative assemblies here. Continue reading “Now available: Updated prokaryote representative genomes collection”

RefSeq release 214 is available!

RefSeq release 214 is available!

RefSeq release 214 is now available online, from the FTP site, and through NCBI’s Entrez programming utilities, E-utilities.

This full release incorporates genomic, transcript, and protein data available as of September 12, 2022, and contains 328,588,569 records, including 239,609,016 proteins, 47,387,931 RNAs, and sequences from 123,394 organisms. The release is provided in several directories as a complete dataset and also as divided by logical groupings.

Foreign contamination screening
Introducing the new Foreign Contamination Screen (FCS) tool! If you produce assembled genomes, check out FCS, a tool you can run yourself to improve your genome assemblies and facilitate high-quality data submissions to GenBank. FCS is part of the NIH Comparative Genomics Resource (CGR), an NLM project to establish an ecosystem to facilitate reliable comparative genomics analyses for all eukaryotic organisms. See our previous blog post to learn how FCS enhances contaminant detection sensitivity. Continue reading “RefSeq release 214 is available!”

New annotations in RefSeq

New annotations in RefSeq

In June and July, the NCBI Eukaryotic Genome Annotation Pipeline released twenty-six new annotations in RefSeq for the following organisms:

  • Anopheles coluzzii (mosquito)
  • Anopheles funestus (African malaria mosquito)
  • Astyanax mexicanus (Mexican tetra)
  • Athalia rosae (coleseed sawfly)
  • Bactrocera dorsalis (oriental fruit fly)
  • Brassica napus (rape)
  • Brienomyrus brachyistius (bony fish)
  • Canis lupus dingo (dingo) (pictured)
  • Caretta caretta (Loggerhead turtle)
  • Dendroctonus ponderosae (mountain pine beetle)
  • Epinephelus fuscoguttatus (brown-marbled grouper)
  • Lagopus muta (rock ptarmigan)
  • Marmota marmota marmota (Alpine marmot)
  • Nematostella vectensis (starlet sea anemone)
  • Ostrea edulis (bivalve)
  • Panthera uncia (snow leopard)
  • Plutella xylostella (diamondback moth)
  • Pyrus x bretschneideri (Chinese white pear)
  • Rhincodon typus (whale shark)
  • Rhipicephalus sanguineus (brown dog tick)
  • Solanum stenotomum (eudicot)
  • Solanum verrucosum (eudicot)
  • Sphaerodactylus townsendi (lizard)
  • Stegostoma fasciatum (shark)
  • Triticum urartu (monocot)
  • Ziziphus jujuba (common jujube)

Continue reading “New annotations in RefSeq”

Foreign Contamination Screen (FCS) tool for GenBank submissions

Foreign Contamination Screen (FCS) tool for GenBank submissions

We are excited to introduce a Foreign Contamination Screen (FCS) tool that you can now run yourself, with enhanced contaminant detection sensitivity to improve your genome assemblies and facilitate high-quality data submissions to GenBank. If you submit genome assembly data to GenBank, the FCS tool is for you!

What is the FCS tool?

FCS, a quality assurance process used to make data suitable for submission, consists of two parts: FCS-adaptor and FCS-GX. FCS-adaptor searches for short sequences that are used as part of the lab preparation process and sometimes wind up in the final assembly by mistake. FCS-GX searches for sequences from a wide range of organisms including bacteria, fungi, protists, viruses, and others to identify sequences that don’t look like they are from the intended organism. In each case, you receive a report of the coordinates and identities of potential contaminants to be reviewed and removed (see Figure 1 for a sample report of the FCS-GX summary output). Both tools are designed to screen both eukaryote and prokaryote genomes.

Figure 1. FCS-GX report showing the summary of contamination identified in a tomato genome. The output indicates there are 83 sequences, adding up to 381 kb total length, to be removed from a mix of insect, fungal, and bacterial sources.

How do I use FCS?

FCS is available from GitHub. Simply download the two programs (FCS-adaptor and FCS-GX), and follow a few steps as outlined in the Quickstart. Both tools are also easy and inexpensive to run on commercial clouds such as Amazon Web Services (AWS) or Google Cloud Platform (GCP), and can screen genomes in a fraction of the time of other approaches. 

Why is FCS important?

Having high quality data available for analysis is necessary in order to arrive at accurate conclusions during research. With FCS, rapid detection of contaminants from foreign organisms in assembled genomes ensures that high value data is being provided for submission and available for reuse. We’ve already used FCS-GX to remove over one hundred megabases of contaminants and thousands of erroneous genes and proteins from previously submitted eukaryote genomes to make the data more useful for all. 

We want to hear from you!

We will update the FCS tool based on your feedback, so try it out and let us know what you think. Please contact us with comments and suggestions.

FCS is part of the NIH Comparative Genomics Resource (CGR), an NLM project to establish an ecosystem to facilitate reliable comparative genomics analyses for all eukaryotic organisms.

Join our mailing list to keep up to date with FCS and other CGR news.

RefSeq release 213

RefSeq release 213

RefSeq release 213 is now available online, from the FTP site and through NCBI’s Entrez programming utilities, E-utilities.

This full release incorporates genomic, transcript, and protein data available as of July 11, 2022, and contains 321,282,996 records, including 234,520,053 proteins, 45,781,716 RNAs, and sequences from 121,461 organisms. The release is provided in several directories as a complete dataset and also as divided by logical groupings. Continue reading “RefSeq release 213”

NLM’s all-new NCBI Datasets genome table is now available

NLM’s all-new NCBI Datasets genome table is now available

We are excited to introduce new and useful updates to the Datasets genome table that let you quickly find and download a genome dataset including genome, transcript and protein sequence, annotation, and a data report.

The new genome table includes many new features and benefits (see Figure 1). With the new genome table you can:

  • Find all current genomes, including metagenomes
  • View multiple taxa such as birds and bees, or polyphyletic groups like fish
  • Easily find genomes with NCBI RefSeq annotations
  • Get more accurate genome counts, since each row now represents a single genome with GenBank and RefSeq accessions for that genome in the same row
  • Customize your downloads to include either GenBank or RefSeq files, or both
  • Download tables or data packages

Continue reading “NLM’s all-new NCBI Datasets genome table is now available”

New RefSeq annotations are available!

New RefSeq annotations are available!

In April and May, the NCBI Eukaryotic Genome Annotation Pipeline released twenty-eight new annotations in RefSeq for the following organisms: